Human Action Recognition Using Spatio-temporal Classification
نویسندگان
چکیده
In this paper a framework “Temporal-Vector Trajectory Learning” (TVTL) for human action recognition is proposed. In this framework, the major concept is that we would like to add the temporal information into the action recognition process. Base on this purpose, there are three kinds of temporal information, LTM, DTM, and TTM, being proposed. With the three kinds of proposed temporal information, the k-NN classifier based on the Mahanalobis distance metric do have better results than just using spatial information. The experimental results demonstrate that the method can recognize the actions well. Especially with our TTM and DTM framework, they do have great accuracy rates. Even with noisy data, the framework still have good performance.
منابع مشابه
Human Action Recognition and Localization using Spatio-temporal Descriptors and Tracking
In this paper we propose a system for human action tracking and recognition using a robust particle filter-based visual tracker and a novel descriptor, to represent spatio-temporal interest points, based on an effective combination of a new 3D gradient descriptor with an optic flow descriptor. These points are used to represent video sequences using a bag of spatio-temporal visual words, follow...
متن کاملGenetic Programming-Evolved Spatio-Temporal Descriptor for Human Action Recognition
The potential value of human action recognition has led to it becoming one of the most active research subjects in computer vision. In this paper, we propose a novel method to automatically generate low-level spatio-temporal descriptors showing good performance, for high-level human-action recognition tasks. We address this as an optimization problem using genetic programming (GP), an evolution...
متن کاملHuman action recognition based on graph-embedded spatio-temporal subspace
Human action recognition is an important issue in the pattern recognition field, with applications ranging from remote surveillance to the indexing of commercial video content. However, human actions are characterized by non-linear dynamics and are therefore not easily learned and recognized. Accordingly, this study proposes a silhouette-based human action recognition system in which a threeste...
متن کاملHuman Action Recognition Using Pyramid Vocabulary Tree
The bag-of-visual-words (BOVW) approaches are widely used in human action recognition. Usually, large vocabulary size of the BOVW is more discriminative for inter-class action classification while small one is more robust to noise and thus tolerant to the intra-class invariance. In this pape, we propose a pyramid vocabulary tree to model local spatio-temporal features, which can characterize th...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملAction Recognition Using Local Spatio- Temporal Oriented Energy Features and Additive Kernel SVMs
Spatio-temporal oriented energy features have been proved to be an efficient feature for action recognition. It has satisfied performance on most of public databases. However, the oriented energy features were used as holistic action features for template matching in many literatures. In the paper, we proposed an action representation based on local spatio-temporal oriented energy features, and...
متن کامل